Why Are 96,000,000 Black Balls on This Reservoir?
I took a boat through 96 million black plastic balls on the Los Angeles reservoir to find out why they’re there. The first time I heard about shade balls the claim was they reduce evaporation. But it turns out this isn’t the reason they were introduced.
Huge thanks to LADWP for arranging this special tour for me. Next time let’s put the GoPro on the submersible!
The balls are made of high density polyethylene (HDPE) which is less dense than water so they float on the surface of the reservoir even if they break apart. They are 10cm (4 inches) in diameter and contain about 210ml of water. So the main reason they are on the reservoir is to block sunlight from entering the water and triggering a chemical reaction that turns harmless bromide into carcinogenic bromate. This effect occurs with prolonged exposure to bromate so regulators insist that levels be kept below 10 microgram per liter on average over a 12 month period.
These Pools Help Support Half The People On Earth
What are these electric blue ponds in the middle of the Utah desert? And why do they keep changing color?
Join Derek Muller (Veritasium) as he looks into the weird, bizarre, and seemingly inexplicable images found on Google Earth to discover what on Earth they actually are. It’s a travel vlog, documentary, and science show wrapped into one. It’s Pindrop.
Parallel Worlds Probably Exist. Here’s Why
The most elegant interpretation of quantum mechanics is the universe is constantly splitting A portion of this video was sponsored by Norton.
Special thanks to: Prof. Sean Carroll https://www.preposterousuniverse.com His book, a major source for this video is ‘Something Deeply Hidden: Quantum Worlds and The Emergence of Spacetime’ Code for solving the Schrödinger equation by Jonny Hyman available here: https://github.com/jonnyhyman/Quantum…
I learned quantum mechanics the traditional ‘Copenhagen Interpretation’ way. We can use the Schrödinger equation to solve for and evolve wave functions. Then we invoke wave-particle duality, in essence things we detect as particles can behave as waves when they aren’t interacting with anything. But when there is a measurement, the wave function collapses leaving us with a definite particle detection. If we repeat the experiment many times, we find the statistics of these results mirror the amplitude of the wave function squared. Hence the Born rule came into being, saying the wave function should be interpreted statistically, that our universe at the most fundamental scale is probabilistic rather than deterministic. This did not sit well with scientists like Einstein and Schrödinger who believed there must be more going on, perhaps ‘hidden variables’. In the 1950’s Hugh Everett proposed the Many Worlds interpretation of quantum mechanics. It is so logical in hindsight but with a bias towards the classical world, experiments and measurements to guide their thinking, it’s understandable why the founders of quantum theory didn’t come up with it. Rather than proposing different dynamics for measurement, Everett suggests that measurement is something that happens naturally in the course of quantum particles interacting with each other. The conclusion is inescapable. There is nothing special about measurement, it is just the observer becoming entangled with a wave function in a superposition. Since one observer can experience only their own branch, it appears as if the other possibilities have disappeared but in reality there is no reason why they could not still exist and just fail to interact with the other branches. This is caused by environmental decoherence.